罗卫华, 杨明琴, 宋 新, 程 丹. 一类广义鞍点问题的分裂预处理[J]. 内江师范学院学报, 2014, (8). DOI:10.13603/j.cnki.51-1621/z.2014.08.002
引用本文: 罗卫华, 杨明琴, 宋 新, 程 丹. 一类广义鞍点问题的分裂预处理[J]. 内江师范学院学报, 2014, (8).DOI:10.13603/j.cnki.51-1621/z.2014.08.002
LUO Wei-hua, YANG Ming-qin, SONG Xin, CHENG Dan. A Splitting Preconditioner for Generalized Saddle Point Problems[J]. Journal of Neijiang Normal University, 2014, (8). DOI:10.13603/j.cnki.51-1621/z.2014.08.002
Citation: LUO Wei-hua, YANG Ming-qin, SONG Xin, CHENG Dan. A Splitting Preconditioner for Generalized Saddle Point Problems[J].Journal of Neijiang Normal University, 2014, (8).DOI:10.13603/j.cnki.51-1621/z.2014.08.002

一类广义鞍点问题的分裂预处理

A Splitting Preconditioner for Generalized Saddle Point Problems

  • 摘要:对于广义鞍点问题,基于参数化的Uzawa方法提出了一种新的预处理子,通过分析预处理后的系统,发现当参数t→0时,其特征值将集中到0和1,因此,当在Krylov子空间中使用某些GMRES迭代方法时,它将保证较好的收敛性.最后,运用Navier-Stokes方程中的一些例子进行实验,验证了这个预处理子的实际效果.

    Abstract:Based on the parameterized Uzawa methods, a new preconditioner for generalized saddle point problems is worked out. An analysis of the pretreated matrix finds that the eigenvalues of the preconditioned matrix will cluster about 0 and 1 when the parameter t → 0. Consequently, on the condition of the proper selection of a parameter, it can ensure a satisfactory convergence when some GMRES iterative methods are used in Krylov subspace. Numerical results of some Navier-Stokes problems are presented to illustrate the actual effect of the preconditioner.

/

    返回文章
    返回
      Baidu
      map