吴忠安, 孟 静, 罗卫华. 求解线性方程组的加权GMRES-DR算法[J]. 内江师范学院学报, 2014, (8). DOI:10.13603/j.cnki.51-1621/z.2014.08.004
引用本文: 吴忠安, 孟 静, 罗卫华. 求解线性方程组的加权GMRES-DR算法[J]. 内江师范学院学报, 2014, (8).DOI:10.13603/j.cnki.51-1621/z.2014.08.004
WU Zhong-an, MENG Jing, LUO Wei-hua. A Weighted GMRES-DR Algorithm for the Linear System of Equations[J]. Journal of Neijiang Normal University, 2014, (8). DOI:10.13603/j.cnki.51-1621/z.2014.08.004
Citation: WU Zhong-an, MENG Jing, LUO Wei-hua. A Weighted GMRES-DR Algorithm for the Linear System of Equations[J].Journal of Neijiang Normal University, 2014, (8).DOI:10.13603/j.cnki.51-1621/z.2014.08.004

求解线性方程组的加权GMRES-DR算法

A Weighted GMRES-DR Algorithm for the Linear System of Equations

  • 摘要:在分析GMRES-DR的基础上,将加权技术和GMRES-DR算法结合,从而加快GMRES-DR算法的收敛速度,并从理论上证明了加权GMRES-DR算法的每次循环生成仍是Krylov子空间,此外数值试验验证了该算法的有效性.

    Abstract:The GMRES-DR method is an efficient iterative method for the solution of equation sets with large-scale sparse non-symmetric matrix. Based on the analysis of GMRES-DR, in combination with the weighted technology, the velocity of convergence of the GMRES-DR algorithm is accelerated, and it is proven theoretically that the circulatory generations each time of the weighted GMRES-DR algorithm are still Krylov sub-spaces and the numerical experimentation proves the validity of the said algorithm.

/

    返回文章
    返回
      Baidu
      map