王 琦. 李代数W 6的2-上同调群[J]. 内江师范学院学报, 2016, (10): 15-19. DOI:10.13603/j.cnki.51-1621/z.2016.10.003
引用本文: 王 琦. 李代数W6的2-上同调群[J]. 内江师范学院学报, 2016, (10): 15-19.DOI:10.13603/j.cnki.51-1621/z.2016.10.003
WANG Qi. 2-Cohomology Group of Lie Algebra W 6[J]. Journal of Neijiang Normal University, 2016, (10): 15-19. DOI:10.13603/j.cnki.51-1621/z.2016.10.003
Citation: WANG Qi. 2-Cohomology Group of Lie Algebra W6[J].Journal of Neijiang Normal University, 2016, (10): 15-19.DOI:10.13603/j.cnki.51-1621/z.2016.10.003

李代数W6的2-上同调群

2-Cohomology Group of Lie Algebra W6

  • 摘要:首先定义了2-上循环常数,并通过2-上循环常数与结构常数确定了复数域C上任意李代数L的双线性函数是其2-上循环的充分必要条件,然后在此结论的基础上确定了李代数W 6的2-上循环、2-上边缘、2-上同调群的具体形式.

    Abstract:The notion of 2-cocycle constants of an arbitrary Lie algebra L over complex number field C is defined at first. Then, using 2-cocycle constants and structure constants of a Lie algebra, a sufficient and necessary condition is determined for that a bilinear function of any algebra L over a complex number field C is a 2-cocycle, on the basis of which the concrete expression of 2-cocycle, 2-coboundary and 2-cohomology of Lie algebra W 6is explicitly formulated, respectively.

/

    返回文章
    返回
      Baidu
      map