舒托, 杨志霞. 基于张量核范数的支持张量机[J]. 内江师范学院学报, 2017, (10): 34-39. DOI:10.13603/j.cnki.51-1621/z.2017.10.007
引用本文: 舒托, 杨志霞. 基于张量核范数的支持张量机[J]. 内江师范学院学报, 2017, (10): 34-39.DOI:10.13603/j.cnki.51-1621/z.2017.10.007
SHUTuo, YANGZhixia. Support Tensor Machine Based on Nuclear Norm of Tensor[J]. Journal of Neijiang Normal University, 2017, (10): 34-39. DOI:10.13603/j.cnki.51-1621/z.2017.10.007
Citation: SHUTuo, YANGZhixia. Support Tensor Machine Based on Nuclear Norm of Tensor[J].Journal of Neijiang Normal University, 2017, (10): 34-39.DOI:10.13603/j.cnki.51-1621/z.2017.10.007

基于张量核范数的支持张量机

Support Tensor Machine Based on Nuclear Norm of Tensor

  • 摘要:通过引入张量的核范数,结合张量的展开矩阵等性质,提出了一种基于张量核范数的支持张量机( STM-NNT)并且构建了相应的算法来更有效地解决张量的分类问题. 该方法通过引入一个核范数正则项来控制权重矩阵的秩, 避免了过学习现象,达到了稀疏学习的目的.

    Abstract:A novel method, called support tensor machine based on nuclear norm of the tensor(STM-NNT) , is proposed
    by the introduction of tensor nuclear norm, and corresponding algorithm is constructed for the efficient settlement of the classi- fying problem of tensor. The said method, by introducing a nuclear norm regular term thus to control the rank of weight ma- trix, saves us from over learning and thus to achieve the goal of sparse learning.

/

    返回文章
    返回
      Baidu
      map