李舒琪. 非对称 Keyfitz-Kranzer 方 程 组 波 的 相 互 作 用[J]. 内江师范学院学报, 2018, (2): 54-59. DOI:10.13603/j.cnki.51-1621/z.2018.02.012
引用本文: 李舒琪. 非对称 Keyfitz-Kranzer 方 程 组 波 的 相 互 作 用[J]. 内江师范学院学报, 2018, (2): 54-59.DOI:10.13603/j.cnki.51-1621/z.2018.02.012
LI Shuqi. Interactions of Elementary Waves for the Asymmetric Keyfitz-Kranzer System[J]. Journal of Neijiang Normal University, 2018, (2): 54-59. DOI:10.13603/j.cnki.51-1621/z.2018.02.012
Citation: LI Shuqi. Interactions of Elementary Waves for the Asymmetric Keyfitz-Kranzer System[J].Journal of Neijiang Normal University, 2018, (2): 54-59.DOI:10.13603/j.cnki.51-1621/z.2018.02.012

非对称 Keyfitz-Kranzer 方 程 组 波 的 相 互 作 用

Interactions of Elementary Waves for the Asymmetric Keyfitz-Kranzer System

  • 摘要:研究了广义 Chaplygin 气体和修正 Chaplygin 气体情形下非对称 Keyfitz-Kranzer 方程组基本波的相互作用. 对于广义 Chaplygin 气体, 其 Riemann 解由 R+J , S+J 或 delta 波组成, 对于修正 Chaplygin 气体, 其解 是 由 R+ J 或 S + J 组成. 考虑初始条件是三片常状态的情形 , 根据初始条件的不同取值范围 ,利用特征分析法和 相平面分析法,分情况讨论了基本波的相互作用问题,构造性地得到了问题的整体解. 进一步地, 令参数 ε 趋于零, 得到 了 Riemann 问题 的解关于这种初始条件 的 小扰动是稳定 的 .

    Abstract:The interactions of elementary waves for the asymmetrical Keyfitz-Kranzer system under the conditions of
    generalized Chaplygin gas and modified Chaplygin gas were studied respectively. For the former case, its Riemann solution is made up of three different structures R+ J, S+J or delta waves. For the modified Chaplygin gas, its solution is made up of R+J and S+J. Since the initial condition is the three normal states, depending on the different value ranges and by use of the
    characteristic analysis and phase plane analysis, the interactions of the elementary waves are examined under different situations, and structurally, the global solutions are acquired. By ordering the parameter approximates to zero, it can be found that the Riemann solutions are stable for such perturbations under the initial conditions.

/

    返回文章
    返回
      Baidu
      map