王晓慧, 李云飞. 判别分析和神经网络法的个人信用等级划分模型[J]. 内江师范学院学报, 2018, (2): 64-68. DOI:10.13603/j.cnki.51-1621/z.2018.02.014
引用本文: 王晓慧, 李云飞. 判别分析和神经网络法的个人信用等级划分模型[J]. 内江师范学院学报, 2018, (2): 64-68.DOI:10.13603/j.cnki.51-1621/z.2018.02.014
WANG Xiaohui, LI Yunfei. TheDiscriminant Analysis and Neural-Network-Based Personal Credit Hierarchy Model[J]. Journal of Neijiang Normal University, 2018, (2): 64-68. DOI:10.13603/j.cnki.51-1621/z.2018.02.014
Citation: WANG Xiaohui, LI Yunfei. TheDiscriminant Analysis and Neural-Network-Based Personal Credit Hierarchy Model[J].Journal of Neijiang Normal University, 2018, (2): 64-68.DOI:10.13603/j.cnki.51-1621/z.2018.02.014

判别分析和神经网络法的个人信用等级划分模型

TheDiscriminant Analysis and Neural-Network-Based Personal Credit Hierarchy Model

  • 摘要:针对个人信用等级的多分类问题进行了研究.通过建立个人信用风险评价指标体系,运用判别分析法构建关于样本的评分模型,得到判别得分;再用神经网络法对样本进行评分预测,得到对应得分,并对神经网络预测得分进行降序排列得到有序样本,最后进行有序样本最优分割,从而实现个人信用的等级划分. 该模型在一定程度上有助于借贷者选择优质客户,从而降低信贷风险.

    Abstract:With the rapid growth of personal credit business, personal credit risk assessment is an urgent problem to be
    solved, and the personal credit rating classification problem is put under examination. Through the establishment of personal credit risk evaluation index system, using discriminant analysis method to construct a grading model for the samples, thus the discriminant score is obtained; then the neural network method is used to predict the scores for the samples, and the scores due are collected and such scores were to put into an descending order so an orderly sample is acquired. Finally, the optimal seg- mentation of the orderly sample is done so as to realize rating of personal credit. The model, to a certain extent, helps borrow- ers spot the high quality customers, thereby to reduce credit risk.

/

    返回文章
    返回
      Baidu
      map