陈伟. 基于蚁群算法的云计算任务分配策略[J]. 内江师范学院学报, 2018, (6): 67-70. DOI:10.13603/j.cnki.51-1621/z.2018.06.012
引用本文: 陈伟. 基于蚁群算法的云计算任务分配策略[J]. 内江师范学院学报, 2018, (6): 67-70.DOI:10.13603/j.cnki.51-1621/z.2018.06.012
CHEN Wei. A Task Allocation Strategy Based on Ant Colony Algorithm in Cloud Computing[J]. Journal of Neijiang Normal University, 2018, (6): 67-70. DOI:10.13603/j.cnki.51-1621/z.2018.06.012
Citation: CHEN Wei. A Task Allocation Strategy Based on Ant Colony Algorithm in Cloud Computing[J].Journal of Neijiang Normal University, 2018, (6): 67-70.DOI:10.13603/j.cnki.51-1621/z.2018.06.012

基于蚁群算法的云计算任务分配策略

A Task Allocation Strategy Based on Ant Colony Algorithm in Cloud Computing

  • 摘要:针对云计算中任务分配的执行时间和负载均衡等方面的问题, 提出一种基于蚁群算法的任务分配策略.该策略综合考虑资源计算能力、执行时间、实时负载等因素, 对启发信息、信息素更新等进行了改进.利用Cloudsim工具进行仿真实验.结果表明:该策略减少了任务执行时间, 有效改善了资源负载不均问题, 负载均衡度稳定在0.20.3之间;提高了资源的利用率, 很好地实现了云计算任务的合理调度.

    Abstract:To solve the problem of task assignment time and load balancing in cloud computing, a task allocation strategy based on ant colony algorithm is proposed.The strategy comprehensively considers factors such as resource computing capability, execution time, real-time load and so on, and improves the heuristic information and the update of pheromone.Using the Cloudsim tool is used for simulation experiments, and the results show that this strategy not only reduces the execution time of task, but also improves the resource load unevenness effectively.The load balancing degree lies stably between 0.2 and 0.3, which enhances the utilization of resources, and realizes the reasonable scheduling of tasks in cloud computing.

/

    返回文章
    返回
      Baidu
      map