韩海彦, 刘玲伶. 一类流行病模型的奇异流形和分岔[J]. 内江师范学院学报, 2023, 38(2): 32-36. DOI:10.13603/j.cnki.51-1621/z.2023.02.006
引用本文: 韩海彦, 刘玲伶. 一类流行病模型的奇异流形和分岔[J]. 内江师范学院学报, 2023, 38(2): 32-36.DOI:10.13603/j.cnki.51-1621/z.2023.02.006
HAN Haiyan, LIU Lingling. Singular manifolds and bifurcations for a class of epidemic models[J]. Journal of Neijiang Normal University, 2023, 38(2): 32-36. DOI:10.13603/j.cnki.51-1621/z.2023.02.006
Citation: HAN Haiyan, LIU Lingling. Singular manifolds and bifurcations for a class of epidemic models[J].Journal of Neijiang Normal University, 2023, 38(2): 32-36.DOI:10.13603/j.cnki.51-1621/z.2023.02.006

一类流行病模型的奇异流形和分岔

Singular manifolds and bifurcations for a class of epidemic models

  • 摘要:利用微分方程定性理论,研究了一类基于家庭检测和追踪的最小流行病模型的奇异流形的存在性和稳定性,给出了奇异流形存在性和稳定性的充要条件,讨论了在奇异流形附近发生的非参数跨临界分岔,同时利用Matlab进行数值模拟,验证了基本再生数大于或小于1时流形的稳定性.

    Abstract:The existence and stability of singular manifolds for a class of minimum epidemic models based on family testing and tracing are studied by qualitative theory of differential equations. The necessary and sufficient conditions for the existence and stability of singular manifolds are presented and the non-parametric trans-critical bifurcations near singular manifolds are investigated. Finally, numerical simulations are conducted to verify the stability of the model by aid of Matlab software under the condition of the basic regeneration number greater than or less than 1 on the epidemic.

/

    返回文章
    返回
      Baidu
      map